МЕХАНИКА

УДК 539.3

Б.В. СОБОЛЬ, Л.П. ВОВК

ОЦЕНКА ЛОКАЛЬНОЙ КОНЦЕНТРАЦИИ НАПРЯЖЕНИЙ В ОКРЕСТНОСТИ ТОЧКИ СТЫКА ТРЕХ УПРУГИХ СРЕД

Определение характера поведения компонентов напряженно-деформированного состояния вблизи особых точек внешних и внутренних границ кусочно-однородных тел позволяет при численном анализе наилучшим образом аппроксимировать решение и построить приближенный процесс для его нахождения. Вопросам поведения решений задач теории упругости в окрестности угловых точек, принадлежащих линии раздела двух различных упругих сред, посвящено достаточно много работ, среди которых отметим работы [1-5].

В данной статье предлагаются некоторые численные результаты, полученные при реализации предложенного в [6] численно-аналитического алгоритма исследования установившихся колебаний составной прямоугольной области с внутренним отверстием. Они позволяют с одной стороны проектировать составные элементы конструкций с усложненной кусочно-однородной внутренней структурой, а с другой, дать практические рекомендации по подбору упругих характеристик стыкуемых областей с целью минимизации возникающей в особых точках сечения локальной концентрации напряжений.

Ключевые слова: гармонические колебания, локальная концентрация напряжений, сингулярные точки границы области.

Постановка задачи. Пусть сечение бесконечной в направлении оси α_3 кусочно-неоднородной упругой призмы занимает в системе координат $\alpha_1 O \alpha_2$ область $D = G^{(1)} \cup G^{(2)} \cup G^{(3)}$, где области $G^{(m)}$ склеены друг с другом и определяются неравенствами:

$$\begin{split} G^{(1)} &= \{ (\alpha_1, \alpha_2) : \left| \alpha_1 \right| \leq c; \alpha_2 \in [-b, -d] \cup [d, b] \}; \\ G^{(2)} &= \{ (\alpha_1, \alpha_2) : \alpha_1 \in [-a, -c] \cup [c, a]; \left| \alpha_2 \right| \leq d \}; \\ G^{(3)} &= \{ (\alpha_1, \alpha_2) : \alpha_1 \in [-a, -c] \cup [c, a]; \alpha_2 \in [-b, -d] \cup [d, b] \}. \end{split}$$

Материал областей $G^{^{(m)}}$ предполагается изотропным и определяется модулем сдвига $\mu^{^{(m)}}$, коэффициентом Пуассона $\nu^{^{(m)}}$ и плотностью $\rho^{^{(m)}}$. Здесь и далее верхний индекс будет определять принадлежность механической характеристики или упругого модуля к области $G^{^{(m)}}(m=1,2,3)$.

Пусть на внешних сторонах сечения $\alpha_1=\pm a$, $\alpha_2=\pm b$ задана гармонически изменяющаяся во времени с частотой ω вибронагрузка переменной интенсивности q, а внутренняя граница сечения свободна. Учитывая симметрию области D, возможно рассматривать волновое поле части области, расположенной в первой четверти. Эта часть области изобра-