УДК 621.52 ББК 31.77

Хабланян М.Х.

Вакуумная техника. Оборудование, проектирование, технологии, эксплуатация. Ч. 1. Инженерно-физические основы : учебное пособие / М.Х. Хабланян, Г.Л. Саксаганский, А.В. Бурмистров; М-во образ. и науки России, Казан. нац. исслед. технол. ун-т. – Казань : Изд-во КНИТУ, 2013. – 232 с.

ISBN 978-5-7882-1447-4

Рассмотрены свойства разреженных газов; режимы и закономерности их течения; массо – и теплоперенос и электрические явления в условиях вакуума; способы и средства его получения; понятийный аппарат вакуумной техники; алгоритм проектирования высоко- и сверхвысоковакуумных систем. Приведен краткий обзор областей практического использования вакуума как уникальной технологической среды. Представлена ретроспектива развития физики и техники вакуума.

Предназначено для подготовки инженеров по специальности «Вакуумная и компрессорная техника физических установок» и бакалавров по направлениям «Технологические машины и оборудование», «Наноинженерия», «Ядерная энергетика и теплофизика», «Материаловедение и технология материалов». Также может быть полезно для специалистов и преподавателей соответствующих профилей.

Печатается по решению редакционно-издательских советов Казанского национального исследовательского технологического университета и Санкт-Петербургского государственного университета аэрокосмического приборостроения.

Рецензенты: д-р техн. наук, профессор *Ю.В. Панфилов* д-р техн. наук, профессор *Р.Р. Зиганиин*

ISBN 978-5-7882-1447-4

- © Хабланян М.Х., Саксаганский Г.Л., Бурмистров А.В., 2013
- © Казанский национальный исследовательский технологический университет, 2013

Ä

СОДЕРЖАНИЕ

Предисловие	6
1. Понятие о вакууме	10
1.1. Что такое вакуум?	10
1.2. Вакуумные технологии в промышленности и науке	12
Контрольные вопросы	24
2. Свойства газов	25
2.1. Давление, плотность, молекулярная концентрация	25
2.2. Уравнение состояния идеального газа	28
2.3. Скорость молекул и температура газа	30
2.4. Давление пара. Испарение в вакууме	35
2.5. Адсорбция и десорбция	40
2.6. Взаимодействие молекул с поверхностью	45
2.7. Водяные пары	48
Контрольные вопросы	52
3. Течение газов	53
3.1. Поток газа	53
3.2. Режимы течения	59
3.3. Молекулярный поток	68
3.4. Термическая транспирация	70
3.5. Молекулярный поток через отверстие в тонкой стенке	72
3.6. Молекулярно-вязкостный (переходный) режим течения	74
3.7. Проводимость, быстрота откачки, быстрота действия	77
3.8. Основное уравнение вакуумной техники	83
3.9. Переходные процессы	88
Контрольные вопросы	89
4. Явления переноса в вакууме	90
4.1. Вязкость газов	90
4.2. Перенос тепла в вакууме	92
4.3. Диффузия газов	98
4.4. Потоки в микроканалах. Диффузионный перенос газов	101
4.5. Адсорбционная «задержка» потока	103
4.6. Поверхностная миграция	104
4.7. Газы в материалах. Газовыделение	106
4.8. Газопроницаемость	111
4.9. Электрические явления в вакууме	113
Контрольные вопросы	121

5. Способы получения вакуума	123
5.1. Типовая характеристика вакуумного насоса	123
5.2. Вакуумные насосы как своеобразные компрессоры	127
5.3. Основные разновидности вакуумных насосов	134
5.4. Технико-экономические характеристики промышленных	
вакуумных насосов	148
5.5. Сопряжение высоковакуумных и форвакуумных насосов	164
5.6. Давление перехода от предварительной к высоковакуумной	
откачке	170
5.7. Интеграция вакуумного тракта электрофизических установок	176
5.8. Измерение быстроты действия вакуумных насосов	182
Контрольные вопросы	187
Приложения	188
П1. Становление вакуумной техники и технологий	188
П1.1. Эволюция представлений о вакууме	188
П1.2. Развитие средств получения вакуума	190
П1.2.1. Механические насосы	192
П1.2.2. Пароструйные (диффузионные) насосы	195
П1.2.3. Молекулярные насосы	196
П1.2.4. Геттерно-ионные и магниторазрядные насосы	197
П1.2.5. Криогенная откачка	199
П2. Вакуумная гигиена	200
П2.1. Классификация чистых помещений	200
П2.2. Принципы организации чистых помещений	203
ПЗ Условные графические изображения и буквенные коды	
элементов вакуумных схем	211
Литература	231