Национальный цифровой ресурс Руконт - межотраслевая электронная библиотека (ЭБС) на базе технологии Контекстум (всего произведений: 686383)
Контекстум

Математика. Вероятность и статистика. 10—11 классы. Базовый и углублённый уровни. Учебное пособие (5000,00 руб.)

0   0
Первый авторВысоцкий И. Р.
АвторыЯщенко И. В.
ИздательствоМ.: Просвещение
Страниц305
ID942834
АннотацияУчебное пособие разработано в соответствии с требованиями Федерального государственного образовательного стандарта среднего общего образования в редакции Приказа Министерства просвещения № 1028 от 27.12.2023 г. Пособие кратко знакомит учащихся 10—11 классов с основами описательной статистики и теории вероятностей. Оно содержит главы, посвящённые элементам теории графов и комбинаторике, основам математической статистики; особое внимание уделяется закону больших чисел. Содержит четырёхзначную таблицу функции стандартного нормального распределения и предметный указатель.
ISBN978-5-09-128580-2 (электр. изд.)
УДК373.167.1:519.2+519.2(075.3)
ББК22.17я721
Высоцкий, И.Р. Математика. Вероятность и статистика. 10—11 классы. Базовый и углублённый уровни. Учебное пособие / И.В. Ященко; И.Р. Высоцкий .— 2-е изд., стер. — Москва : Просвещение, 2025 .— 305 с. : ил. — 13-2717-01 .— ISBN 978-5-09-128757-8 (печ. изд.) .— ISBN 978-5-09-128580-2 (электр. изд.) .— URL: https://rucont.ru/efd/942834 (дата обращения: 25.12.2025)

Предпросмотр (выдержки из произведения)

Математика._Вероятность_и_статистика._10—11_классы._Базовый_и_углублённый_уровни._Учебное_пособие.pdf
И. Р. ВЫСОЦКИЙ И. В. ЯЩЕНКО МАТЕМАТИКА ВЕРОЯТНОСТЬ И СТАТИСТИКА Б 10–11 классы БАЗОВЫЙ И УГЛУБЛЁННЫЙ УРОВНИ Учебное пособие Под редакцией И. В. Ященко 2-е издание, стереотипное Москва . «Просвещение» 2026 . © АО «Издательство «Просвещение» для коллекции ООО «ЦКБ «БИБКОМ»
Стр.2
УДК 373.167.1:519.2+519.2(075.3) ББК 22.17я721 В93 12+ Издание выходит в pdf-формате. Б В93 Высоцкий, Иван Ростиславович. Математика. Вероятность и статистика : 10—11-е классы : базовый и углублённый уровни : учебное пособие : издание в pdfформате / И. Р. Высоцкий, И. В. Ященко ; под ред. И. В. Ященко. — 2-е изд., стер. — Москва : Просвещение, 2026. — 302, [2] с. : ил. ISBN 978-5-09-128580-2 (электр. изд.). — Текст : электронный. ISBN 978-5-09-128757-8 (печ. изд.). Учебное пособие разработано в соответствии с требованиями Федерального государственного образовательного стандарта среднего общего образования в редакции Приказа Министерства просвещения РФ № 1028 от 27.12.2023 г. Пособие кратко знакомит учащихся 10—11 классов с основами описательной статистики и теории вероятностей. Оно содержит главы, посвящённые элементам теории графов и комбинаторике, основам математической статистики; особое внимание уделяется закону больших чисел. Содержит четырёхзначную таблицу функции стандартного нормального распределения и предметный указатель. УДК 373.167.1:519.2+519.2(075.3) ББК 22.17я721 ISBN 978-5-09-128580-2 (электр. изд.) ISBN 978-5-09-128757-8 (печ. изд.) © АО «Издательство «Просвещение», 2025 . © Художественное оформление. АО «Издательство «Просвещение», 2025 Все права защищены . © АО «Издательство «Просвещение» для коллекции ООО «ЦКБ «БИБКОМ»
Стр.3
ОГЛАВЛЕНИЕ Предисловие . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Глава I. Представление данных и описательная статистика .................. 5 1. Среднее арифметическое и медиана массива данных .................. 2. Сравнение описательных свойств среднего арифметического и медианы ..................................................... 3. Квартили и урезанное среднее .................................... 4. Межквартильный размах и диаграмма «ящик с усами» ............... 5*. Среднее квадратичное, среднее гармоническое и среднее геометрическое .................................................. 6*. Степенные средние и неравенство о средних ........................ 7. Дисперсия и стандартное отклонение .............................. 8. Свойства среднего арифметического и дисперсии ..................... Глава II. Элементы теории графов ....................................... 9. Графы и подграфы. Цепи, циклы и деревья ......................... 10. Изоморфные графы. Плоские и планарные графы ................... 11. Степени вершин графа. Эйлеровы пути и эйлеровы графы............. 12*. Свойства деревьев, остовное дерево графа ........................... 13*. Эйлерова характеристика.......................................... 14*. Ориентированные графы .......................................... Б 6 9 16 19 23 26 30 31 39 40 46 49 55 60 66 Глава III. Случайные эксперименты и случайные события .................. 71 15. Случайный эксперимент, случайные события и вероятности ........... 16. Случайные опыты с равновозможными элементарными событиями...... 17. Операции над событиями ......................................... 18. Формула сложения вероятностей ................................... 19. Условная вероятность случайного события и правило умножения вероятностей ................................................... 20. Дерево случайного эксперимента и формула полной вероятности ....... 21. Независимые события ............................................ Глава IV. Элементы комбинаторики ...................................... 72 78 82 85 89 94 101 105 22. Комбинаторное правило умножения. Перестановки и факториал числа 106 23. Число сочетаний и треугольник Паскаля ............................ 24. Формула бинома Ньютона......................................... 110 116 Глава V. Серии последовательных испытаний ............................. 119 25. Испытания. Серия испытаний до первого успеха ..................... 26. Серия независимых испытаний Бернулли ........................... 27. Случайный выбор из конечной совокупности ........................ 120 124 130 Глава VI. Случайные величины и распределения .......................... 135 28. Случайная величина и распределение вероятностей .................. 29. Операции над случайными величинами ............................. 30. Геометрическое распределение и биномиальное распределение.......... 136 143 145 Глава VII. Математическое ожидание ..................................... 31. Математическое ожидание дискретной случайной величины ........... 32. Совместное распределение двух случайных величин .................. . ОГЛАВЛЕНИЕ © АО «Издательство «Просвещение» для коллекции ООО «ЦКБ «БИБКОМ» 151 152 157 . 301
Стр.302
33. Независимые случайные величины ................................. 34. Свойства математического ожидания ............................... Глава VIII. Рассеивание случайных величин ............................... 38. Дисперсия и стандартное отклонение биномиального и геометрического распределений .................................. Глава IX. Закон больших чисел .......................................... 39. Неравенство Чебышёва ........................................... 40. Закон больших чисел (теорема Чебышёва) ........................... 41. Близость частоты и вероятности. Теорема Бернулли .................. Глава X. Элементы математической статистики ............................ 42. Генеральная совокупность и случайная выборка ..................... 43. Оценки по выборке (выборочные оценки) ........................... 44. Выборочные оценки среднего значения и дисперсии .................. 45. Интервальные оценки ............................................ 46. Проверка статистических гипотез .................................. 161 165 35. Математическое ожидание геометрического и биномиального распределений . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 175 182 184 189 190 195 199 203 204 207 211 216 218 Глава XI. Непрерывные случайные величины ............................. 223 47. Примеры непрерывных случайных величин ......................... 48. Функция плотности вероятности непрерывной случайной величины .... 49. Равномерное распределение ....................................... 50. Показательное распределение ...................................... 51. Нормальное распределение ........................................ Б 52. Использование нормального распределения для описания случайной изменчивости и центральная предельная теорема .................... Глава XIII. Измерение линейной связи между случайными величинами ....... 54*. Совместное наблюдение двух величин и ковариация ................. 55*. Свойства ковариации ............................................ 56*. Коэффициент корреляции случайных величин ....................... 57*. Ковариация и коэффициент корреляции в статистике ................ 58*. Различие между статистической и причинно-следственной связью ...... 59*. Линейная регрессия и метод наименьших квадратов ................. 224 225 231 233 238 244 Глава XII. Распределение Пуассона ...................................... 251 53. Случайная последовательность (поток) независимых событий .......... 252 255 256 259 261 265 270 272 Глава XIV. Простое случайное блуждание . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 60*. Простое одномерное случайное блуждание .......................... 61*. Переходы в простом одномерном блуждании . . . . . . . . . . . . . . . . . . . . . . . . 280 278 Ответы ............................................................... 289 Предметный указатель ................................................. 297 36. Дисперсия и стандартное отклонение дискретной случайной величины . . 176 37. Свойства дисперсии и стандартного отклонения ...................... . . 302 ОГЛАВЛЕНИЕ © АО «Издательство «Просвещение» для коллекции ООО «ЦКБ «БИБКОМ»
Стр.303

Облако ключевых слов *


* - вычисляется автоматически